电脑桌面
添加文秘网到电脑桌面
安装后可以在桌面快捷访问

浅议数据挖掘技术与财务分析

栏目:财经金融发布:2010-08-18浏览:2832下载224次收藏

    摘要:目前企业普遍面临数据爆炸、知识匮乏的困境。企业在进行财务分析时如何在海量的资源中挖掘出有用的信息,为管理和决策服务,是企业迫切需要解决的问题。文章主要研究了数据挖掘技术在财务分析中的应用问题,介绍了数据挖掘的基本原理,并对数据挖掘在财务分析的应用以及应用存在的困难进行了探讨。
 
    关键词:数据挖掘技术;财务分析
 
    财务报表是综合反映企业一定时期财务状况、经营成果、现金流量状况及财务状况变动的文件,是企业和投资者进行财务分析的主要依据。但是企业普遍面临数据爆炸、知识匮乏的困境,如何从海量的信息资源中挖掘出潜在的信息,为管理和决策服务,是企业迫切需要解决的问题。数据挖掘为解决该问题提供了新的途径。
 
    一、数据挖掘基本原理介绍
 
    数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘将人们对数据的应用,从低层次的简单查询,提升到从数据中挖掘有用的信息和知识,提高决策能力的水平。
 
    (一)数据挖掘的主要功能
 
    数据挖掘的目标是从数据库中发现隐含的、有意义的信息,主要有以下功能:
 
    1、估计与预测。估计是根据已有积累的资料来推测某一属性未知的值,预测是根据对象属性的过去观察来估计该属性未来之值。数据挖掘技术能够自动的在大型数据库中寻找预测性信息。
 
    2、关联和序列发现。关联是要找出在某一事件或是资料中会同时出现的东西;序列发现与关联关系很密切,所不同的是序列发现中相关的对象是以时间来区分的。
 
    3、聚类。数据库中的记录可被化分为一系列有意义的子集,即聚类。聚类技术要点是在划分对象时不仅考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。
 
    4、描述。描述的功能是对负责的数据库提供简要的描述,其主要目的是为了在使用别的功能时对数据先有较好的了解,然后再建立分析模型。
 
    5、偏差检测。数据库中的数据常有一些异常记录,从数据库中检测这些偏差很有意义。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差、量值随时间的变化等。
 
    (二)数据挖掘的基本步骤
 
    sas研究所提出的semma方法是目前最受欢迎的一种数据挖掘方法,其描述的数据挖掘的大致过程包括取样、探索修改、模型和评价。
 
    1、数据取样。在进行数据挖掘之前,首先要根据数据挖掘的目标选定相关的数据库。通过创建一个或多个数据表进行抽样。所抽取的样本数据量既要大到足以包含有实际意义的信息,同时又不至于大到无法处理。
 
    2、数据探索。数据探索就是对数据进行深入调查的过程,通过对数据进行深入探察以发现隐藏在数据中预期的或未被预期的关系和异常,从而获取对事物的理解和概念。
 
    3、数据调整。在上述两个步骤的基础上对数据进行增删、修改,使之更明确、更有效。
 
    4、建模。使用人工神经网络、回归分析、决策树、时间序列分析等分析工具来建立模型,从数据中发现那些能够对预测结果进行可靠预测的模型。
 
    5、评价。就是对从数据挖掘过程中发现的信息的实用性和可靠性进行评估。
 
    二、数据挖掘在财务决策中的应用
 
    从财务分析的角度来看,数据挖掘是一种新的财务信息处理技术,其主要特点是能对会计数据库以及其他业务数据库中的大量数据进行抽取、转换、分析及其他模型化处理,从中提取辅助决策的关键性数据。数据挖掘其实是深层次的财务数据分析方法。分析这些数据主要目的是为企业决策提供真正有价值的信息,进而获取更大企业价值的最大化。
 
    (一)网络经济时代企业财务分析的变化
 
    随着网络经济时代的到来,现在的财务分析与传统财务分析相比,数据使用的广泛性大大提高,而且还产生如下变化:
 
 &nb
解锁后支持完整在线阅读或下载编辑海量优质内容资源

浅议数据挖掘技术与财务分析

点击下载
分享:
热门文章
    热门标签
    确认删除?
    QQ
    • QQ点击这里给我发消息
    回到顶部